Digital and Marketing Asset Management

THE REAL STORY ABOUT DAM TECHNOLOGY AND PRACTICE

by

THERESA REGLI

foreword by Filippo Catalano

Chief Digital Operations Officer, Nestlé

$39.00
CONTENTS

How to Use This Book \hspace{1cm} v
Foreword \hspace{1cm} xii
Introduction \hspace{1cm} xiv

CHAPTER 1

What Is Digital and Marketing Asset Management Technology? 1
The Blurring of Enterprise Lines \hspace{1cm} 6
The Challenges of Rich Media \hspace{1cm} 7
What Is an Asset? \hspace{1cm} 9
Metadata \hspace{1cm} 10
Digital and Marketing Asset Management Defined \hspace{1cm} 12
DAM Technology Services \hspace{1cm} 14
Ten Core Characteristics of a DAM System \hspace{1cm} 15
The Rise of Lightweight DAM Offerings \hspace{1cm} 19

CHAPTER 2

The Business Case for Digital and Marketing Asset Management 21
Exploiting the Who, What, When, and Where of Digital and Marketing Assets \hspace{1cm} 22
Supporting Strategic Organizational Initiatives \hspace{1cm} 24
Improving Collaboration and Streamlined Creative Workflow \hspace{1cm} 27
Developing Better Brand Management \hspace{1cm} 27
Enabling Marketing Agility and Operational Excellence \hspace{1cm} 28
Examining DAM Costs \hspace{1cm} 29
A Final Note on Metadata \hspace{1cm} 44
CHAPTER 3
The DAM Maturity Model 45
People 48
Information 52
Systems 53
Processes 56

CHAPTER 4
DAM Technology Services: Asset Creation and Management 59
Ingestion 60
Asset Lifecycle Services 68
Media Processing 73
Taxonomy Management 76

CHAPTER 5
DAM Technology Services: Search, Retrieval, and Navigation 89
Structured Metadata Search 90
Simple and Advanced Search 90
Surfacing of Search Features 91

CHAPTER 6
DAM Technology Services: Asset Assembly and Delivery 97
Collaboration and Storyboarding 98
Workflow 100
Localization and Internationalization 105
Transformation and Transcoding 108
Multichannel Delivery 111
Personalization 113
CHAPTER 7
DAM Technology Services: Architecture and Administration 115
Application Development and System Administration 116
System Security 116
Reporting and Analytics 122
Distribution 123
Configuration 126
Customization, Integration, and Extensibility 128
Scalability and Performance 130
DAM Administration 131
A Special Note About Standards 136

CHAPTER 8
Cloud, On-Premise, or Hybrid? DAM Delivery Models 145
Option 1: On-Premise 146
Option 2: Private Cloud 147
Option 3: Public Cloud 147
Option 4: Software as a Service 148
Option 5: Hybrid 148
Storage and Archiving 150

CHAPTER 9
You’re Not Just Buying a Tool: Strategic Considerations 155
Vendor Professional Services 156
Integration and Partnerships 158
Channel Professional Services:
 Support and Community 159
CHAPTER 10
Universal Scenarios:
The Key to Comparing Technologies 165
Image and Brand Management 167
Publishing 179
Corporate Time-Based Media Management 187
Broadcast Media Management 196
Peripheral/Other Media Asset Management
 Use Case Scenarios 203

CHAPTER 11
Mixology:
DAM in the Digital Marketing Cocktail 205
DAM in a Digital Marketing Framework 207
Why These Models Are Important 211

Index 213
Acknowledgments 224
About the Author 225
What Is Digital and Marketing Asset Management Technology?

The Blurring of Enterprise Lines
The Challenges of Rich Media
What Is an Asset?
Metadata
Digital and Marketing Asset Management Defined
DAM Technology Services
Ten Core Characteristics of a DAM System
The Rise of Lightweight DAM Offerings
Since the turn of the millennium, digital media—photos, audio files, video clips, animations, games, interactive ads, streaming movies, and experiential marketing—have become an increasingly significant part of our everyday experience. The combination of inexpensive, highly functional digital still and video cameras (even as part of mobile devices); increased network bandwidth; decreased storage costs; low-cost, high-performance processors; high-capacity, solid-state memory; affordable cloud services; and the requisite digital media infrastructure has laid the foundation for today’s vibrant electronic ecosystem. Whether you’re browsing the Web, listening to a song on an iPhone, watching a video on a tablet, opening a rich media email on your mobile device, or recording a TV series on a digital video recorder, you’re experiencing digital media.

This digital media expansion creates a challenge for consumers and enterprises alike. Consumers want to organize the experience and consumption of digital media files. They want to be able to find them, categorize them, use them when and where they want, and do all this across multiple devices.

Enterprises have a similar but much broader wish list. Of course, they want to be able to find their assets easily—whether for a historical archive or in service of current projects. Most often, they want to use digital media “products” to reach prospective buyers. They may use them as part of a marketing campaign to reach a specific audience in a specific form, such as a brochure, an email promotion, a movie trailer, or a website landing page. The digital media tool also could be the product itself—a music collection, streaming television series, video, electronic magazine, ebook, or catalog—that the enterprise must distribute in a variety of formats or forms.

To produce these products, you need to create, organize, find, and use pieces of digital media: images, graphics, photos, layout and design files, video segments, and audio files. In most cases, you need to add textual information like copy, descriptions, and product data. Finally, you have to put it all together in the right format within the specific production process or workflow. Upon completion, you’ll want to distribute and track all the product components, as well as any changes or versions over time. Also, you’ll want to know how the various audiences use or consume the product, in both digital and nondigital (for example, paper, CD, and DVD) formats. Additionally (if that were not enough), many digital files have restrictions and rights that must be monitored and respected.
Enterprises have a growing desire to manage the entire lifecycle of digital media. They want to manage each piece of the product independently of, or in addition to, managing the product. This requires a master file that can be transformed into different formats, depending on need and derivative works that are one representation and use of the master.

This management of digital media throughout its lifetime is the general domain of digital asset management (DAM).

Marketing asset management (MAM) often falls under the same rubric, and we’ll explore both in the context of DAM. It is against this background that the DAM discussion will begin.

PUNS

Puns on the term DAM are, unfortunately, one of the things you will need to get used to if you’re pursuing this discipline and technology.

Digital asset management as a discipline and a technology is all about the control, flexibility, portability, access, and reporting of digital assets (images, video, audio, and documents) among organizations, customers, partners, and suppliers. DAM is concerned with delivering the right content to the right people, on all devices (laptops, tablets, TV, and mobile) mostly in real time, with the ability to track and measure digital asset engagement across an enterprise and its potential global reach.

As illustrated in Figure 1.1, digital and marketing asset management is a complex discipline with many moving technological parts, involving not only process and technology but also the people who make the strategy and technology perform. These include a company sponsor, a DAM champion, a librarian (or two), and—most importantly—the stakeholders who will use the system (or not). Whenever possible, you should include those who will use the system to ensure that it meets their needs and that they are comfortable with the new technology. When the different pieces of the technology puzzle come together, it should operate like a humming hive, where the bees have everything they need to produce targeted and personalized digital experiences.
FIGURE 1.1
DAM—and more broadly, creative operations management—is a “hive” of different features and functions spanning production, management, and multichannel delivery.

The origins of digital asset management date back to the early 1990s. DAM’s roots lie in image management, publishing, and video (see Figure 1.2). Early DAM vendors attempted to provide a common repository in which to store digital media files. Some vendors started on the desktop, providing a simple database or archive for cataloging and indexing digital images. In many cases, they were cataloging licensed or stock photographs used in brochures or other publications.

Other DAM vendors started in the publishing arena by offering a repository for storing all the files for a particular publishing product, such as a book or magazine. These early functions were dominated by “creatives,” who used desktop publishing applications, such as QuarkXPress, Aldus PageMaker (remember those two?), or Adobe’s InDesign, and related photo-editing software, such as Adobe Photoshop or Illustrator.
FIGURE 1.2
Those tools that are now considered DAM tools evolved from three different origins.

A third group of vendors attempted to support digital video or time-based asset workflows. At the time, digital video editing was a new technology. It allowed video editors to cut and paste video digitized from tape or “ingested” directly from a live broadcast rapidly and more easily, together with other video, and create entirely new content from the combination. This technology reduced time and cost while increasing flexibility and creativity. This use of DAM coupled the DAM repository with the production or broadcast workflow. It also integrated with pioneering (though proprietary) digital video editors from companies like Avid and Pinnacle, as well as with VCRs, playout devices, schedulers, and other broadcast hardware.
This three-pronged origin originally made DAM products fragmented and specialized within the “DAM” umbrella. These lines are blurring as vendors add functionality to reach into areas outside their original domains. Still, DAM products come in many forms, and the most modern waves of new vendors are “born digital”; thus, they are more difficult to wedge into one of the three categories. Some are good at managing particular kinds of media. Others focus on particular use cases, workflows, or processes. The mix of vendors and products you’ll find in the marketplace today is varied, with these new “born digital” vendors competing with vendors and products that can trace their roots either directly or indirectly to these first-generation products.

The Blurring of Enterprise Lines

As recently as 2012, it was easy to segment vendors by category, such as “enterprise” or small- to medium-sized workgroup tools. “Enterprise capability” was measured based on scale, integration capability, global footprint, and large clients with global reach. Some of these classifications remain true; however, the advent of the cloud and the breadth of APIs (even among smaller vendors) have blurred the lines between historical “enterprise” vendors and the rest.

Adoption of the gargantuan server farms from the likes of Amazon, Google, Rackspace, and Microsoft (Azure) has been slow but is increasing. Cloud-based pricing from these technology behemoths has kept the landscape competitive, less intimidating, and easier to adopt. Any business can scale rapidly up or down as the need requires in the cloud.

DAM technology is now born in the cloud, or the vendor offers on-premise and cloud-based applications, services, and software-as-a-service (SaaS) environments. Increasingly, cloud-based technology is applied for cold storage archiving. Archives in the cloud would have been unthinkable a few years ago, but tumbling prices and cold storage are bringing archives into real time. A need exists for strong strategies to match, as well as have systems for the full lifecycle of assets, from creation to archive.

This book will deepen your understanding of DAM and help clarify how you will use this technology. We will arm you with the knowledge of how to ask the right questions so that you can create a DAM environment that will achieve your business goals.
The Challenges of Rich Media

Over the past few years, DAM has become an increasingly mainstream and core enterprise application. Conferences, journals, and even informal (but structured) “meet-ups” attest to the growth of DAM. Despite digital asset management being one of the fastest-growing marketing technologies, it may be the least understood.

DAM technology focuses on managing digital, or “rich,” media stored in files.

Originally, “rich media” meant anything that wasn’t purely text. It also referred to the depth or amount of information contained in the content itself. For example, a video contains visual and oral information; as such, a computer may have difficulty managing the content without human assistance. Examples of rich media include digital forms of images, video, audio, graphics, animations, artwork, games, CAD documents, PowerPoint presentations, or combinations of any of these. Rich media can include created or generated documents (as compared to scanned documents) that are highly structured, have defined page layouts, and contain or reference other content such as images, text, and graphics. These design documents, which may be created in Illustrator, Photoshop, Word, Quark, InDesign, or other programs, are often rendered as PDF files or web pages.

Rich media files pose many challenges:

- **Rich media can be large and unwieldy.** Some video files can be terabytes in size. Print-ready PDF files can be several hundred megabytes. Size affects all aspects of working with the media: storage, processing, movement and distribution, transformation, and search and retrieval. It also affects costs. While network bandwidth continues to increase, moving large files around a network and over geographic distances is still expensive. The most common workaround is to move smaller or lower-resolution representations, or “proxies,” thereby reducing cost, increasing speed of access, and facilitating processes that don’t need the full, high-resolution form.

- **Rich media is nontextual.** Because it’s visual or linear and time-based (such as video), rich media introduces fundamental challenges for how it’s identified, presented, searched for, manipulated, transformed, and segmented. Additionally, you may need to determine how to identify, define, and track derivative works. Further, because rich media is nontextual, it requires
additional textual information (metadata) describing the media to accompany it either directly, within the repository, or in both places. The need for metadata is essential to DAM, because without metadata, finding your rich media becomes terribly unwieldy to nearly impossible.

- **Rich media requires special handling.** If you work with audio, video, images, and animations, you understand that this media has specialized requirements for manipulation, long-term storage, the kinds of tools or applications you can use with it, and various defining standards. Video has increasingly become a common media type, and it requires a greater technical understanding than other forms of digital media. As a result, it currently has more specialized requirements for its handling, processing, and storage.

- **Rich media is most often managed by a specialized team of people.** Unlike a document management system that nearly everyone within a modern enterprise may use, rich media assets tend to be managed by a specialized team of media specialists. Although marketing and distribution executives may work with everyday software, rich media “creatives” in the trenches work with very specific software, often on a Mac, and bring specialized workflows to the mix.

- **Rich media is growing exponentially.** As the tools for creating and disseminating rich media have become increasingly commonplace and less expensive—notwithstanding the specialized skill sets of many people working with rich media assets—we have seen an explosion in the growth of rich media and the use cases for it. Marketing departments exploit rich media for Web- or Internet-centric campaigns. “How-to” manuals have proliferated. Imagine a time in the not-too-distant future when all car manuals are tablet or small-screen based (in the dashboard). And imagine that these “how-to” manuals are supplemented (or even supplanted) with video tutorials. We are only at the beginning of this process.

- **Rich media represents critical intellectual property (IP).** Pieces of rich media may have intrinsic or explicit value for a company. For example, the copy of a video clip of a CEO interview on CNN may require security, rights, licensing, tracking, and, in publishing scenarios, a way to monetize it. Photographs are also a prime example of rich media as IP with a need to be rights-managed.
What Is Digital and Marketing Asset Management Technology?

Understanding the needs and challenges of rich media files marks the starting point for understanding DAM. There is a difference, however, between a run-of-the-mill rich media file and a “digital asset.” This distinction is critical to the definition and essence of DAM.

What Is an Asset?

People often ask, “What are digital assets? And how do we identify ours?” As a starting point, consider the general notion or concept of an asset: something that has intrinsic or acquired value. Your house, a building, a coin, a postage stamp, a DVD, a recording, a book, and your skills or abilities are all assets.

Consider an asset conceptually rather than as a physical thing; this may help you understand DAM and its potential usefulness. In theory, a digital asset is something represented in a digital form that has an intrinsic or acquired value. This initial definition is intentionally general. It could correspond to almost anything or any piece of media in a digital form, such as a photo, website, or email message.

As a practical matter, however, DAM has evolved to support the management of digital media assets almost exclusively, which includes images, video, audio, and related artifacts (such as brochures and compound publications). You would typically use different types of technology to manage email, Word documents, relational data records, and Web pages.

Even some image “assets” don’t fall under the domain of DAM technology as it is known today. Scanned paper or forms that end up as TIFF or PDF files do not constitute media assets that originate through some creative process.

This distinction between rich media and other electronic assets is important because sometimes DAM consultants or vendors will suggest that DAM tools are suitable for managing all of your electronic assets, when in fact, they are not. While this is less common than in the earlier days of DAM, be on guard against this false assertion.

Therefore, we refine our working definition a bit: A digital asset corresponds to a media file or files that have an intrinsic or acquired value.

For example, a movie, television show, magazine, or book has an implicit intrinsic value that today is increasingly produced digitally. These types of assets tend to be easier to understand, since they are both digital assets and “the products” being manufactured for
sale. They have (in a manner of speaking) “shareholder” value. By contrast, a brochure, white paper, or banner advertisement may also have brand equity and marketing value, but no value as a direct income-generating asset. An asset’s value may fluctuate over time. The key factors for DAM are that the asset has some value throughout its lifetime and that someone wants to use or reuse the asset. A discussion in Chapter 2, “The Business Case for Digital and Marketing Asset Management,” will introduce some considerations and best practices for identifying the digital assets you want to retain.

C A V E A T

This definition also allows for physical objects such as DVDs, videotapes, film reels, product samples, film costumes, and museum items to be included as “assets.” While this may appear to be a stretch, consider enterprises that need to catalog physical items and provide a digital form or proxy to represent them, such as a museum cataloging its collection of Renaissance paintings. Now you have a digital image or icon representing the physical thing, so the definition of a digital asset actually includes both digital and physical things.

Metadata

We have not yet reached a final definition. Technically speaking, a digital asset is more than just the media file. To realize the value of that file (or collection of files), you need to have additional information about that asset. In short, you need “metadata.” For most DAM purposes, we define an asset as the media content itself, plus its metadata (see Figure 1.3). Metadata can be as simple as the name, author, or creation date of the file or as complex as the rights and fees around use of an image or the extracted speech converted to text from a video.

The three fundamental types of metadata are as follows:

- **Implicit:** It’s an inherent part of the asset, such as date created, file size, MIME type, date modified, author ID, and so forth. It’s called “implicit” because a human being did not decide those values. The values are inferred from the file’s physical characteristics.

- **Explicit:** A human or an automated process made some judgments about the asset, such as subject, ranking, category, or value, or manually overwrote an implicit value, such as changing the author.
Anatomy of a Digital Asset

Content becomes an asset when metadata is associated with it.

- **Derived**: The metadata is extracted from an asset, such as text extracted from a PowerPoint file and made searchable, or text pulled automatically from another system and applied to the file. Derived metadata often constitutes a first-class content asset in its own right and may have metadata of its own.

CAVEAT

In a DAM system, metadata can be physically bound to (embedded in) the asset itself or stored separately—typically in a database. We get into this distinction later, but for now, don’t get confused between how the metadata is linked to an asset and the logical types of metadata we’ve described. Implicit does not mean embedded, and vice versa.

Metadata is essential to managing assets. Metadata provides useful information about the content, such as “Older woman holding a baby” photo, taken by Phil Smith, on January 5, 2008 (see an actual example in Figure 1.4). It makes content accessible and searchable, provides context, defines usage rights, shows an asset’s history of use, and, over time, can be used to determine an asset’s value.
Metadata can, in a sense, become an asset itself. It is invaluable, and you will need to manage it as well.

There are many different categories of metadata. In fact, your choice of fields here is endless. In the sections on DAM Services (Management Services) and Standards (Dublin Core) in Chapter 7, “Dam Technology Services: Architecture and Administration,” we talk more about metadata and discuss the categories that tend to matter most for digital asset management.

To sum up, here is the complete definition of a digital asset in the DAM context:

A digital media file or collection of files, consisting of the content itself plus metadata, which together have an intrinsic or acquired value, and represent a digital or physical entity.

If, however, you find this definition too conceptual, just think of digital assets as the media file plus its metadata.

Digital and Marketing Asset Management Defined

In its simplest form, a digital asset management system provides a secure repository that facilitates the creation, management, organization, production, distribution, and, potentially, monetization of media files identified as digital assets.

Like other content management technologies, DAM provides basic library services: a common (typically centralized) and secure place
to store, organize, and retrieve files. It is also core process services, including specific facilities for the management, manipulation, transformation, security, movement, and processing of rich media files and their metadata. Most DAM systems can now integrate with other tools and systems.

ALERT

DAM is used in two ways. Primarily, it means “digital asset management.” Secondarily, it can mean a digital asset management system or product—for example, “The DAM can do the following things....” Rather than write “DAM system,” we use the term “DAM.” The context should distinguish the intended meaning.

Integration into creation and publishing tools and with other systems is an important question in product selection. Content management vendors often tout their tools’ ability to “manage” rich media. Specifically, they offer repositories that can store and control binary files and apply access rights and workflows to those files. In some cases, they provide some basic image manipulation services. We call this “DAM Light,” and for many enterprise scenarios, it may suffice. For the more sophisticated scenarios of the kind we identify in the Publishing and Video Production domains of Chapter 10, “Universal Scenarios: The Key to Comparing Technologies,” you need a full-blown DAM system, which provides a particular set of unique services.

DAM tools support specialized types of content, which have needs that web content management (WCM) and document management (DM) systems can’t meet. Specialized DAM teams within the enterprise employ highly specialized collateral tools to prep and distribute that content.

Key functional differences also exist. DM tools tend to emphasize either simple Office document collaboration or the processing of large volumes of scanned images. WCM tools manage websites and associated content, although only the Web form of that content.

In contrast, DAM technology manages a master file or asset expressed in multiple digital or physical forms. For example, an image stored in the DAM system would have multiple different renditions, such as different approved sizes, formats, scales, coloring, or alterations, each depending on its use, such as for the Web, print, or banner ads. As such, the DAM could actually feed content to the WCM or WCM repository in an appropriate form.
Functionally, DAM systems have several capabilities not found in other types of content management systems:

- **Direct ingestion services:** The ability to ingest or migrate large amounts and various types of assets directly into the system, without one-by-one, manual insertion.

- **Transformation, transcoding, and extraction:** The ability to render assets in different formats, sizes, scales, file types, or resolutions, or change the audio and video characteristics, encoding, or bit rate of the asset, respectively.

- **Rendition management:** The ability to manage multiple, individual renditions of an asset, such as a preview, a proxy, one for the website, and one for print, and of each version of that asset. Thus, if the asset itself is changed or versioned, its related renditions act as an organic function of the DAM software and of asset management in general. Every asset will always have additional renditions of itself that are automatically generated and are related to it.

- **Rights and intellectual property management:** The ability to manage, distribute, and reuse assets based on the IP rights the organization has around the asset.

DAM Technology Services

While digital and marketing asset management products don’t vary much in terms of what they can do, they do vary wildly in how they do it from an architectural and user experience perspective. Every DAM tool has certain common services and functionality and also some that may be unique, additional, or particular to a specific product or industry application or a use case.

As you get further into the book, we’ll dive deeper into DAM technology:

- The components of and services performed by a DAM system
- The overall technology and architecture of these systems and the implication of architectural choices on function and services
- Some general platform capabilities and features

If you look at DAM systems from a mechanical perspective, it’s about process management on top of information architecture. In fact,
DAM technology provides several layers of services. The key question for your enterprise is “How can the system’s features help or hinder you and your team in achieving your business requirements around creation, management, assembly, and distribution of digital and marketing assets?”

We use a couple of different perspectives to examine an asset management system. The first is a comparative logical versus physical view. The logical view describes the set of functions it performs and the services it provides. This view doesn’t necessarily describe how the system performs the function or where in the system it performs that function.

In contrast, the physical view shows you the system architecture, laid out onto tiers with actual hardware and software. Two different products or implementations could provide very similar sets of services, yet have different architecture. This comparison can lead into a completely different set of questions and understanding about the scalability, throughput, capacity, distribution, and reliability based on the system’s architecture.

In general, DAM systems perform and provide a broad range of functions. Vendors typically cluster these functions into four areas: create, manage, deliver, and administer. But let’s start at the beginning, the features and functions that make a DAM system what it is.

Ten Core Characteristics of a DAM System

In a partnership with the DAM Foundation (www.damfoundation.org), Real Story Group and other industry experts have created a set of functional requirements that define a true DAM. This is now ratified as an industry standard. Together, we have developed a testing methodology to judge vendors as part of our ongoing research. The 10 core criteria follow:

- Ingest
- Secure
- Store
- Transform
- Enrich
- Relate
- Process
- Find
- Preview
- Produce/Publish
1. **Ingest**

DAM systems *ingest* assets individually or in mass sets, and allow for the manipulation of those assets and their metadata individually or with mass actions.

The vendor must

- Demonstrate that there are different methods by which assets and metadata can be uploaded to the DAM.
- Demonstrate embedded metadata writing and extraction.
- Demonstrate bulk or batch actions and ingestion workflows.

2. **Secure**

DAM systems *secure* the assets they contain. Security in a DAM system extends to defining access control lists (ACLs) for assets and defining roles for users accessing the system.

The vendor must

- Demonstrate methods by which different users or user groups can be given differing levels of capability to perform actions on the DAM.
- Demonstrate that administrators are able to add new users and non-named users securely or that they have facility for SSO.
- Demonstrate that rights can be managed via embedded metadata, notifications, and expiration dates.

3. **Store**

DAM systems *store* assets as both binaries and metadata. A DAM system can store multiple file types and allow for the customization of metadata fields. The metadata in those fields can then be attached to the stored files.

The vendor must

- Demonstrate that a range of asset types can be ingested and supported by the DAM.
- Demonstrate that users are able to use metadata to turn content into assets via various means.
4. Transform

DAM systems render or transform assets on ingest into new forms, such as thumbnails or proxy files. The new forms generated on asset ingest via transformation should all be stored as asset parts of the original file. Transformation can also occur when a user downloads files from the DAM system later or during automatic distribution.

The vendor must

- Demonstrate thumbnail and proxy creation.
- Demonstrate some capacity for asset editing such as cropping.
- Demonstrate that either multiple transcodes or transformations are produced on ingest or can be requested on download.

5. Enrich

DAM systems enrich assets through the application of metadata and metrics during the use and reuse of an asset throughout its lifecycle.

The vendor must

- Demonstrate that global data is held on site usage (downloads, traffic, and so on) and preferably holds data on assets and individual users as well.
- Demonstrate that this data is available for download and preferably that this data can be used to create reports, graphs, and tables on the DAM or by using a third-party integration.

6. Relate

DAM systems relate assets by tracking the relationships between and among an original asset and versions or variants of the original. Versioning and version control tools are central to an asset’s life in a DAM system.

The vendor must

- Demonstrate that assets can be saved as versions, accessible from the asset, which can be viewed and reinstated.
- Demonstrate other ways that relationships can be created between assets.
- Demonstrate that UIDs are in use and how different versions are linked via these IDs.
7. Process
DAM systems regulate a structured process in the management, creation, and review of assets with workflow tools. Via programmed workflows, DAM systems allow a decentralized workforce to collaborate in a centralized system.

The vendor must

- Demonstrate that there are ways that processes can be streamlined, using ingestion or review and approval workflows, for example, but preferably with multiple workflow options.
- Demonstrate ways that workflows can be tracked, regulated, and assigned to different users (at minimum, emailing notifications to users).

8. Find
DAM systems enable users to find assets and retrieve those assets by facilitating search through metadata, collections, workflows, and access control tools. By increasing the discovery of assets that may not have been easily accessible before ingestion, a DAM system assists workers in leveraging existing content for maximum potential.

The vendor must

- Demonstrate that all metadata can be searched and can perform advanced searches with AND/OR search queries (for example, using Boolean logic).
- Demonstrate that there are multiple ways to organize assets and then navigate through the system. Taxonomies, lightboxes, and saved searches are examples of features that aid navigation.

9. Preview
DAM systems have a preview function that allows users to view assets before downloading or opening files on their devices. Because the preview feature searches quickly—without download—DAM systems reduce users’ search time.

The vendor must

- Demonstrate that images, documents, and audiovisual assets can be previewed in the DAM system.
- Demonstrate that batches of assets can be grouped into lightboxes or presentation areas that can be shared internally and externally.
10. Produce/Publish

DAM systems produce or publish content by distributing assets outside the system by sharing, linking, and more. This DAM function may be as simple as generating a URL on ingest or as complex as allowing users to build collections of items for sharing with a workgroup.

The vendor must

- Demonstrate that there are facilities by which assets can be published or content using assets can be produced on the DAM system or via an integration or plug-in.
- Demonstrate that assets can be published using embeds, unique links, or similar.

In general, DAM systems help companies manage their digital media at various points throughout the lifecycle of the media and lifetime of the business. They aim to facilitate workflows that involve this media—whether they’re creative, production, or distribution workflows—or broader business processes, like video or advertising production, marketing campaign management, or marketing collateral distribution.

The Rise of Lightweight DAM Offerings

In its early days, digital asset management was simply about storing, organizing, and retrieving digital content. Now DAM does much more than that, but for those whose needs are basic, simpler functionality may be adequate. Today, some products on the market fill the niche of “DAM Light” and are at the lower end of the price scale. While they may not meet all 10 core characteristics of a DAM, they are a significant step up from a shared drive.

Many of these less specialized DAMs are “born digital,” and are fully Web-based, which allows for straightforward setup and installation. Generally, costs are low. However, be aware that these are closer to iPhoto or Box.com on steroids than they are to a true DAM, per the 10 core characteristics listed previously.

A number of established vendors offer a “slimmed-down” version of their DAM product, where it’s possible to carry out basic actions (upload, download, search, and share). Given the vast array of choices in this market, it’s easy to see why some of the bigger vendors are tapping into this niche. For you, there’s an added benefit, since you
can easily upgrade to the full product after you’ve determined that the simple version is effective in your company.

Some vendors sell different modules or feature packages that can be bolted on to the “Light” version when needs dictate:

- Version control
- Editing and rendering
- Transformation and transcoding
- Document support
- Workflow
- Plug-ins and integrations