

Humanizing AI: Filling the Gaps with Multi-Faceted Research

Joel W. Branch, Ph.D.

Chief Product Officer, Lucd

Introduction

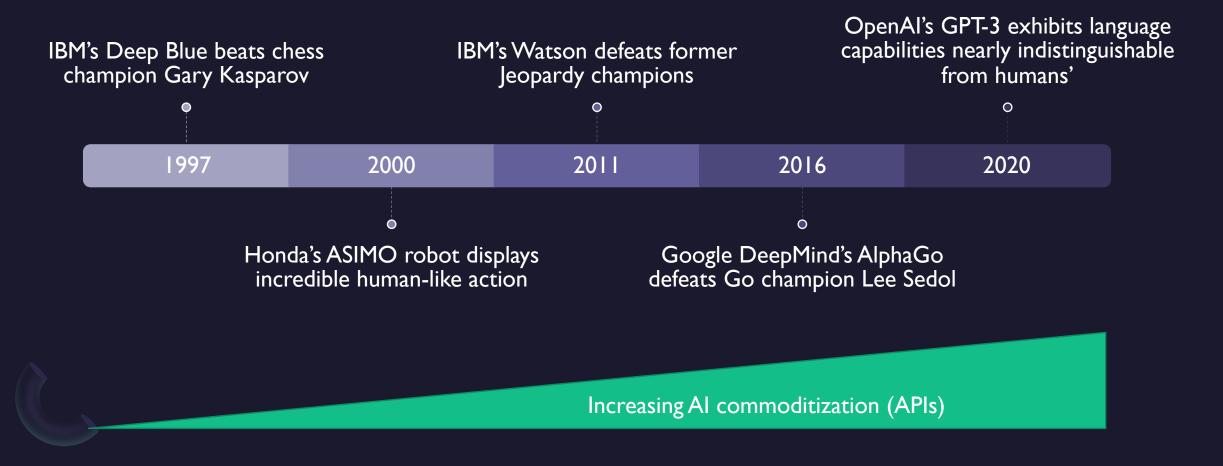
Problem

- Al is permeating our society with profound impact, at an astoundingly fast rate
- Many AI deployments have been hastily developed, with little thought of real-world consequences
- What do I mean by humanizing AI?
 - Creating governance frameworks, involving a broad array of research competencies, for democratizing the development of safe, effective, and game-changing AI solutions
 - Not creating pleasantly convincing human-like interfaces, e.g., voice assistants (though techniques can be extended)

- Short summary on the evolution of Al
- Al deployment challenges
- Humanizing AI with a fresh approach to governance

Evolution of AI

Short history of AI milestones



Trends in AI value and applications

- Al Augmentation predicted to create \$2.9T of business value in 2021
- Al engineering a top tech strategy: focusing on operationalization for business²
- Increasingly democratized AI development via no/low-code frameworks (will permeate AI engineering)

AI deployment challenges

• Some stats^{3, 4}...

- 7 out of 10 companies report little to no impact from AI projects
- 40% of companies that made significant investments in AI have yet to report gains
- 87% of data science projects do not make it to production

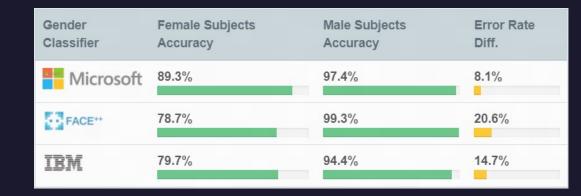
- Major adoption challenges
 - Al bias
 - Fueled by over-technically driven solution development
 - Black box decision-making
 - Lack of transparency and rationale in AI output
 - Disparate hard-to-access data
 - Approx. 50% of AI development spent on data access and cleaning⁵

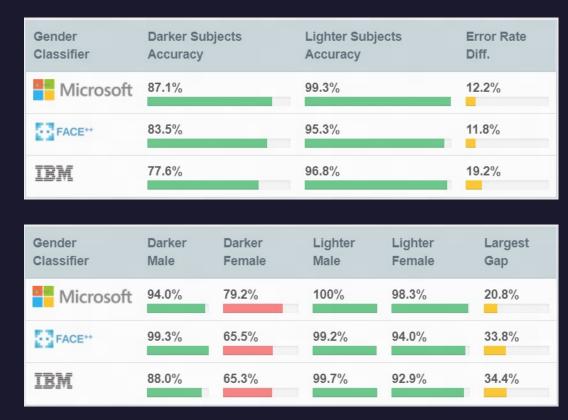
Notable examples⁶

- Race and gender bias in job recruitment software
- Race bias in online ads
- Race bias in facial recognition software

AI bias in depth

- Gender Shades⁷ project
 example
 - Project evaluates the accuracy of popular Alpowered gender classification products
 - Contributed new benchmark image dataset attempting a balance among gender and skin types
 - Exposure of biased/insensitive performance resulted in internal reviews within Microsoft and IBM





Insufficient organizational support

- Executives do not champion (and fund) Al-based strategies
- Al is limited to "projects," and/or isolated within "innovation labs"
- Al development teams are nearly exclusively comprised Al and data –related talent
- Limited supply of AI and data science talent

• Immature development process

Deployed system

- Unfair
- Inaccurate
- Non-competitive, nontrustworthy solutions

Al model development

- No explainability
- No governance
- No multi-disciplinary involvement

Data collection

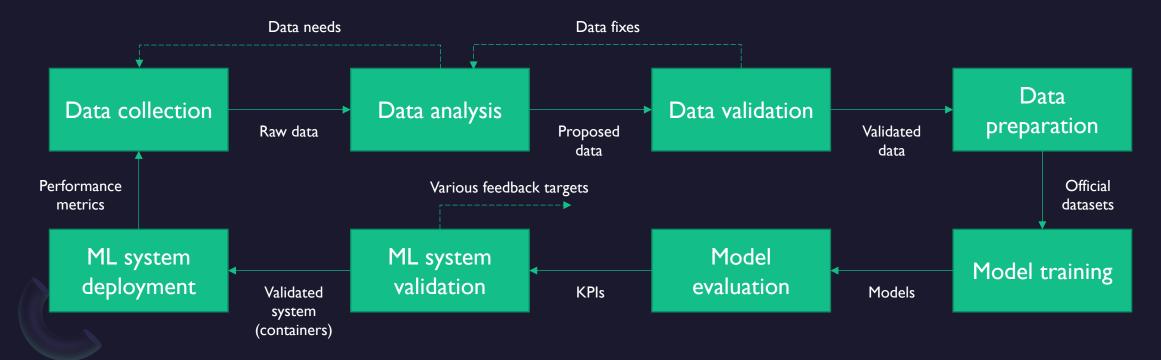
- Careless data collection
- Biased data
- Insufficient data

Humanizing AI

Improving the AI lifecycle with MLOps

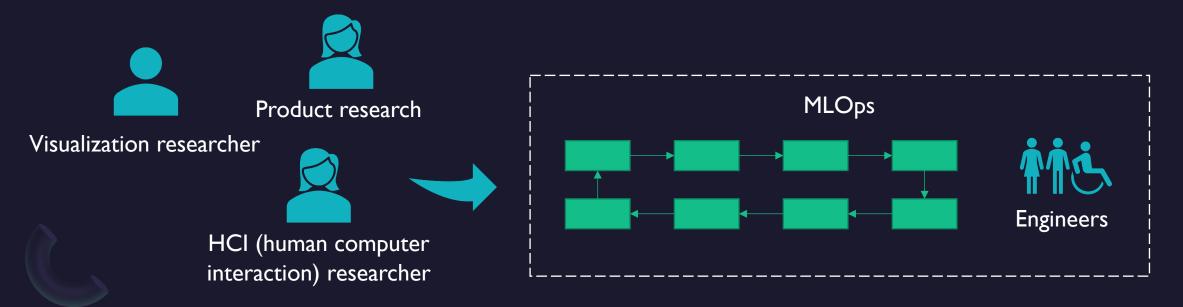
• MLOps

- Disciplined enterprise process (modeled off DevOps)
- Traditionally ML engineers (data scientists, data engineers, ML engineers, SW engineers)



Improve MLOps to enable "humanization"

- How?
 - Expand MLOps to broaden participation among different research competencies, to democratize the development of safe, effective, and game-changing AI solutions



Visualization research

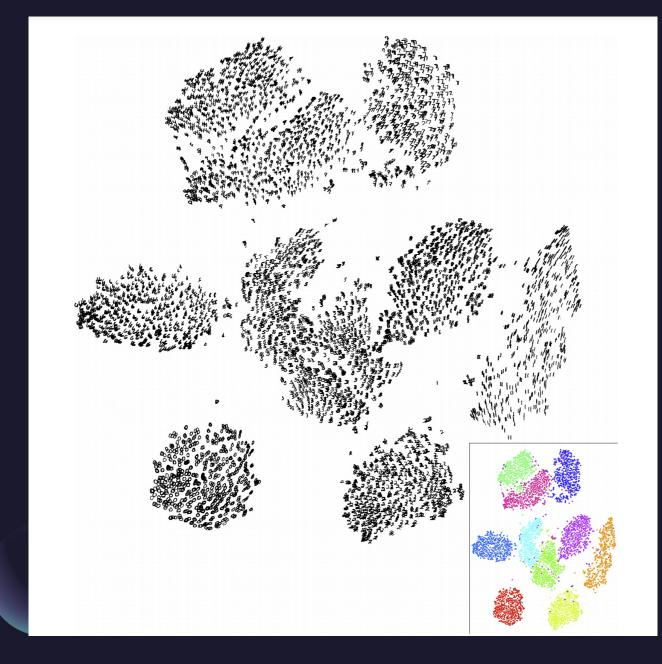
• Some relevant AI challenges

- Exploding data volume and dimensionality limit interpretability in *data analysis* and *validation* phases
- Intersectional bias (hardest to identify, most prevalent) limits data collection through validation phases
 - E.g., determining if data has bias toward (a) *tall*, (b) *males*, and (c) *blonde hair*, as opposed to just *men*

Example Solutions	Details	Humanization
Latent space (compressed dimension) data exploration	Need new ways to intuitively visualize distinct data groupings and relationships among them ⁸	Helps stakeholders w/ little domain knowledge assess semantic data features
Data subgroup performance analysis	Identification and vis. of subgroups for comparative AI perf. analysis; needs collaboration with data scientists ⁹	Helps reduce bias in deployed models; helps non- tech stakeholders participate in bias detection

Visualization research

Example visualization of latent space data



HCI research

Some relevant Al challenges

- (Deep learning) AI model explainability limit trust in model evaluation through deployment phases
- Scaling up AI deployments will require automating parts of the MLOps workflow, a process which is still premature and requires AI domain knowledge

Example Solutions	Details	Humanization
Decision and structure –based AI model explainability	Need new ways to express decision rationale using causality and natural language techniques (where possible); needs collaboration w/ ML engineers	Helps non-tech MLOps stakeholders participate in model evaluation; increases trust and engagement among end-users
Opensource frameworks for MLOps	Need new policy languages to express automation and governance rules to make MLOps easier to use; collaboration with ML engineers	Innovates and simplifies frameworks for expressing and enforcing AI ethics

HCI (and product) research

From AI explainability to causality

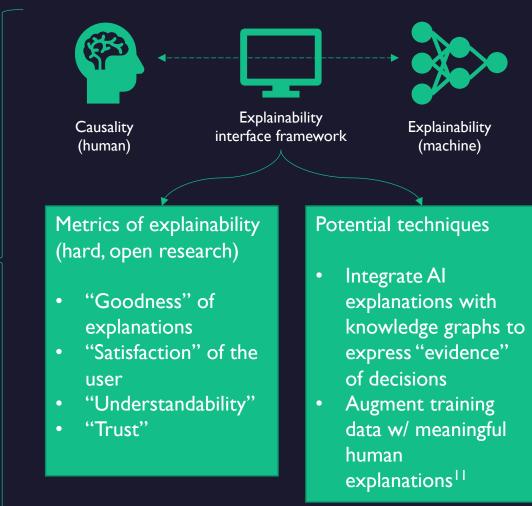
For this demonstration, let's take the same sample each time, in this case sample index 86 i = 76 $\,$

For a random sample uncomment out the following line

i = np.random.randint(0, X_test.shape[0])

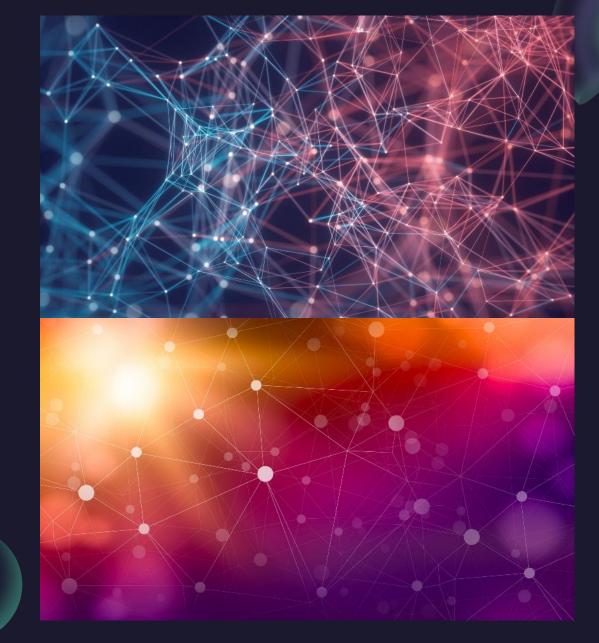
exp = explainer.explain_instance(X_test[i], random_forest.predict_proba, num_features=4)
exp.show_in_notebook(show_table=True, show_all=False)

Feature-based decision explanation¹⁰



- Humanizing Al
 - Necessary for safe, enjoyable, competitive AI solutions
 - Importance will increase as (governmental) AI ethics policies start to mature
 - Many open problems still exist, and require cross-discipline collaboration in among academia and industry

Thank You



References

- I. J-D Lovelock et al. "Forecast: The Busines Value of Artificial Intelligence, Worldwide, 2017-2025." Gartner, 2018.
- 2. E. Brethenoux. "Top Strategic Technology Trends for 2021: AI Engineering." Gartner, 2021.
- 3. J.Vanian. "Why Most Companies Are Failing at Artificial Intelligence: Eye on A.I." Fortune, 2019.
- 4. "Why do 87% of Data Science Projects Never Make it into Production." VentureBeat, 2019. <u>https://venturebeat.com/2019/07/19/why-do-87-of-data-science-projects-never-make-it-into-production/</u>.
- 5. "2020 State of Data Science." Anaconda, 2020.
- 6. N.T. Lee et al. "Algorithmic Bias Detection and Mitigation: Best Practices and Policies to Reduce Consumer Harms." Brookings, 2019.
- 7. J. Buolamwini and T. Gebru. "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification." Conference on Fairness, Accountability, and Transparency, 2018.
- 8. Y Liu et al. "Latent Space Cartography: Visual Analysis of Vector Space Embeddings." EuroVis, 2019.
- 9. A.A. Cabrea et al. "FAIRVIS: Visual Analytics for Discovering Intersectional Bias in Machine Learning." IEEE VAST, 2019.
- 10. M.T. Ribeiro et al. "Why Should I Trust You?: Explaining the Predictions of Any Classifier." ACM SIGKDD International Conf. on Knowledge Discovery and Data Mining, 2016.
- II. N. C. F. Codella et al. "Teaching Meaningful Explanations." 2018.