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Introduction

* Problem

* Al is permeating our society with profound impact, at an astoundingly fast rate

* Many Al deployments have been hastily developed, with little thought of real-world
consequences

* What do | mean by humanizing Al?

* Creating governance frameworks, involving a broad array of research competencies, for
democratizing the development of safe, effective, and game-changing Al solutions

* Not creating pleasantly convincing human-like interfaces, e.g., voice assistants (though
techniques can be extended)
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Agenda

* Short summary on the
evolution of Al

* Al deployment challenges

* Humanizing Al with a fresh
approach to governance
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Short history ol Al milestones

OpenAl’s GPT-3 exhibits language
IBM’s Deep Blue beats chess IBM’s Watson defeats former capabilities nearly indistinguishable
champion Gary Kasparov Jeopardy champions from humans’

° ° o
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Honda’s ASIMO robot displays Google DeepMind’s AlphaGo
incredible human-like action defeats Go champion Lee Sedol
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° « Al Augmentation predicted to create $2.9T of business value in 2021
Trends in Al value

* Al engineering a top tech strategy: focusing on operationalization for

and applications business?

* Increasingly democratized Al development via no/low-code frameworks
(will permeate Al engineering)



Al deployment ‘
challenges
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Why enterprise Al efforts are tailing

e Some stats>4...

* 7 out of 10 companies report little to no impact from Al projects
* 407% of companies that made significant investments in Al have yet to report gains

» 87% of data science projects do not make it to production
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Why enterprise Al efforts are failing

* Major adoption challenges

© Al bias

* Fueled by over-technically driven solution development
* Black box decision-making
* Lack of transparency and rationale in Al output

* Disparate hard-to-access data

» Approx. 50% of Al development spent on data access and cleaning®
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Al bias in depth

* Gender Shades’ project
example

Gender
Classifier

Gender
Classifier

Female Subjects
Accuracy

89.3%

78.7%

79.7%

Darker Subjects
Accuracy

87.1%

83.5%

Male Subjects
Accuracy

97.4%

99.3%

94.4%

Lighter Subjects
Accuracy

99.3%

95.3%

Error Rate
Diff.

8.1%

Error Rate
Diff.

12.2%

11.8%

* Project evaluates the accuracy of popular Al-
powered gender classification products IBM 77.6% 96.8% 19.2%

* Contributed new benchmark image dataset

. . Gender Darker Darker Lighter Lighter Largest
attemptlng a balance among gender and Skln Classifier Male Female Male Female Gap
types 94.0% 79.2% 100% 98.3% 20.8%

* Exposure of biased/insensitive performance 09.3%  655% 09.2%  94.0% 33.8%
resulted in internal reviews within Microsoft

88.0% 65.3% 99.7% 92.9%

and IBM

Tuesday, February 2, 20XX Sample Footer Text 10



Why enterprise Al efforts are tailing

* Insufficient organizational support

* Executives do not champion (and fund) Al-based strategies
* Al is limited to “projects,’ and/or isolated within “innovation labs”
* Al development teams are nearly exclusively comprised Al and data —related talent

* Limited supply of Al and data science talent
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Why enterprise Al efforts are failing

* Immature development process

* Unfair * No explainability * Careless data collection
* Inaccurate * No governance * Biased data
* Non-competitive, non- * No multi-disciplinary * Insufficient data

trustworthy solutions involvement

Tuesday, February 2, 20XX Sample Footer Text






Improving the Al litecycle with M1L.Ops

* MLOps
* Disciplined enterprise process (modeled off DevOps)

* Traditionally ML engineers (data scientists, data engineers, ML engineers, SV engineers)

Data needs Data fixes
R T |
| |
Raw data - Proposed Validated
data data
Performance Various feedback targets Official
metrics it > datasets
Validated Models
system

(containers)
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Improve MLOps to enable
“humanization”

e How!?

e Expand MLOps to broaden participation among different research competencies, to democratize the development of safe, effective, and
game-changing Al solutions

dh
- Product research

Visualization researcher
- |
- - - Engineers
HCI (human computer

interaction) researcher Y

- g,
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Visualization research

* Some relevant Al challenges

* Exploding data volume and dimensionality
limit interpretability in data analysis and
validation phases

* Intersectional bias (hardest to identify,
most prevalent) limits data collection
through validation phases

* E.g., determining if data has bias
toward (a) tall, (b) males, and (c)
blonde hair, as opposed to just men
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Example
Solutions

Latent space
(compressed

dimension) data

exploration

Data subgroup
performance
analysis

Details

Need new ways to
intuitively visualize
distinct data
groupings and
relationships
among them?

|dentification and
vis. of subgroups
for comparative Al
perf. analysis; needs
collaboration with
data scientists’

Humanization

Helps stakeholders
w/ little domain
knowledge assess
semantic data
features

Helps reduce bias
in deployed
models; helps non-
tech stakeholders
participate in bias
detection
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HCI research

e Some relevant Al
challenges

* (Deep learning) Al model
explainability limit trust in model
evaluation through deployment phases

* Scaling up Al deployments will require
automating parts of the MLOps
workflow, a process which is still
premature and requires Al domain
knowledge
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Example
Solutions

Decision and
structure —based Al
model explainability

Opensource
frameworks for
MLOps

Details

Need new ways to
express decision
rationale using
causality and natural
language techniques
(where possible);
needs collaboration
w/ ML engineers

Need new policy
languages to express
automation and
governance rules to
make MLOps easier
to use; collaboration
with ML engineers

Humanization

Helps non-tech
MLOps stakeholders
participate in model
evaluation; increases
trust and
engagement among
end-users

Innovates and
simplifies
frameworks for
expressing and
enforcing Al ethics




HCI (and product) research

From Al explainability to causality

Prediction probabilities

malignant 0.36
benign 0.64

Feature

area error > 47.72
),

Feature-based decision explanation'®
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Value

. Explainability Explainability
interface framework .
(machine)

T

Causality
(human)




Summary

* Humanizing Al
* Necessary for safe, enjoyable, competitive Al solutions

* Importance will increase as (governmental) Al ethics policies
start to mature

* Many open problems still exist, and require cross-discipline

collaboration in among academia and industry
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Thank You
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